On using feedforward neural networks for clinical diagnostic tasks
نویسندگان
چکیده
In this paper we present an extensive comparison between several feedforward neural network types in the context of a clinical diagnostic task, namely the detection of coronary artery disease (CAD) using planar thallium-201 dipyridamole stress-redistribution scintigrams. We introduce results from well-known (e.g. multilayer perceptrons or MLPs, and radial basis function networks or RBFNs) as well as novel neural network techniques (e.g. conic section function networks) which demonstrate promising new routes for future applications of neural networks in medicine, and elsewhere. In particular we show that initializations of MLPs and conic section function networks--which can learn to behave more like an MLP or more like an RBFN--can lead to much improved results in rather difficult diagnostic tasks.
منابع مشابه
New Self-adaptive Probabilistic Neural Networks in Bioinformatic and Medical Tasks
We propose a self–adaptive probabilistic neural network model, which incorporates optimization algorithms to determine its spread parameters. The performance of the proposed model is investigated on two protein localization problems, as well as on two medical diagnostic tasks. Experimental results are compared with that of feedforward neural networks and support vector machines. Different sampl...
متن کاملMulti-View Face Detection in Open Environments using Gabor Features and Neural Networks
Multi-view face detection in open environments is a challenging task, due to the wide variations in illumination, face appearances and occlusion. In this paper, a robust method for multi-view face detection in open environments, using a combination of Gabor features and neural networks, is presented. Firstly, the effect of changing the Gabor filter parameters (orientation, frequency, standard d...
متن کاملFeedforward Sequential Memory Neural Networks without Recurrent Feedback
We introduce a new structure for memory neural networks, called feedforward sequential memory networks (FSMN), which can learn long-term dependency without using recurrent feedback. The proposed FSMN is a standard feedforward neural networks equipped with learnable sequential memory blocks in the hidden layers. In this work, we have applied FSMN to several language modeling (LM) tasks. Experime...
متن کاملFeedforward Neural Networks in Reinforcement Learning Applied to High-Dimensional Motor Control
Local linear function approximators are often preferred to feedforward neural networks to estimate value functions in reinforcement learning. Still, motor tasks usually solved by this kind of methods have a low-dimensional state space. This article demonstrates that feedforward neural networks can be applied successfully to high-dimensional problems. The main difficulties of using backpropagati...
متن کاملArtificial Neural Networks for Diagnosis of Hepatitis Disease
Recently, neural networks have become a very important method in the field of medical diagnostic. The objective of this work is to diagnose hepatitis disease by using different neural network architectures. Standard feedforward networks and a hybrid network were investigated. Results obtained show that especially the hybrid network can be successfully used for diagnosing of hepatitis.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Artificial intelligence in medicine
دوره 6 5 شماره
صفحات -
تاریخ انتشار 1994